
"공진"이라고 한마디로 말해도, 그것이 전기의 이야기이거나 기계의 이야기이거나 해서, 대화가 맞물리지 않았던 적은 없을까요? 당사의 경우 Z-Move 라는 기계적인 내진동성이 뛰어난 커넥터를 출시하고 있는 경우도 있어, 8~9할의 인간은 공진이라고 하면 기계적 공진을 떠올릴 수 있습니다. 전기의 공진의 이야기를 하는 경우에는, 제대로 염두를 두지 않으면 혼란해 버리는 사람이 나옵니다. 그 때 관련된 일이나 전문 분야에서 같은 말과 다른 것을 떠올리게 되는군요. 혹은 공명이라는 말도 있어, 공진과는 무엇이 다른 것인가? 어떻게 구분하면 좋을까? 등 공진은 잘 듣는 말이지만 의외로 다소 어렵습니다.
예를 들면 「파괴」라고 하는 말은 물리적으로 물건을 파괴하는 것 뿐만이 아니라 「가격 파괴」 「체제를 파괴한다」 「상식을 파괴한다」등과 현상이나 상태에 대해서도 사용됩니다만, 그다지 조용하다고 느끼는 사람은 없을 것입니다. 덧붙여서 파괴란 「어떤 힘이나 영향이 더해져 그 자체의 형상・기능・성질 등이 없어지는 것. 또, 그것을 일으키는 행위」라고 합니다.
「공진」도, 이 「파괴」라고 하는 말의 레벨까지 떨어뜨리면, 분명 다른 상황에서 그 말이 제시되어도 혼란하지 않고 곧바로 힘으로 떨어뜨릴 수 있다고 생각합니다. 이번에는 공진의 의미를 정리하면서 개별 기술적인 부분을 만져 가면 좋겠습니다.
공진과 공명은 실은 같은 영어 「Resonance」를 번역한 결과입니다. 즉, 적어도 영어로는 구별되지 않습니다. 이 말을 번역할 때 물리학의 세계에서는 「공명」이 선호되어 사용되었습니다. 소리를 수반하는 현상으로부터 사용되어 낸 것이 그 이외의 진동에 관해서도, 이 번역을 맞추는 것이 일반적이 된 것 같습니다.
한편으로 공학 분야에서는 「공진」이라고 하는 번역을 받는 것이 많았던 것 같고, 이것은 전기 회로의 공진 현상 등으로 「공명」=「함께 울린다」라고 하는데 위화감이 있었기 때문일지도 모르겠네요. (공명도 사용되는 경우가 있습니다만) 요점은 모두 같은 현상=Resonance를 가리키고 있어, 본질적인 차이는 없고 약간의 속하는 소사에티의 차이로 기호의 부르는 방법이 달라질 뿐이군요. 간토에서 쓰레기를 버린다는 것을, 간사이에서는 쏘는(방), 홋카이도에서는 던진다고 하는 것일까요? 어느 쪽을 사용해도 실수는 아니기 때문에, 사용하는 말이 달라도 혼란하지 않고 서로를 존중해 사이좋게 합시다.
친밀한 현상이라고 하는 것으로, 공명의 이야기로부터. 기타가 2대 있는 상태로, 한쪽의 기타의 현을 연주하면 옆에 두고 있는 만지지 않는 쪽의 기타의 같은 현이 울리거나 합니다. 또, 좀 더 희귀한 케이스로 꽤 큰 소리로 음악을 듣지 않으면 일어나지 않지만, 음악에 따라 특정 소리로 「포~♪」라고 마음대로 기타가 울릴 수도 있습니다. 이것은 공명, 즉 공진입니다.
즉 공진이란, 근처인 움직임을 하고 있는 것이 있을 때에, 약간의 영향일 것인데 따라 동일한 동작을 해 버리는 현상입니다. 어떤 경우라도 붙어 버리는 것이라고 하면 그렇지 않고, 특정의, 후술하는 고유 주파수라고 하는 것입니다만, 「영향을 받기 쉬운 주파수의 움직임」의 때만 붙어 움직임, 한편 원래는 작은 영향력에서도 그것이 계속되면, 자꾸자꾸 커져 버리는 현상을 공진/공명이라고 부릅니다. 이것은 전기 회로에서도 물리적인 것에서도 마찬가지입니다만, 전술의 기타의 예로 말하면, 현이 내는 음정의 주파수에 해당합니다. 또한, 근처에 있는 상대가 랜덤한 주파수의 움직임을 가지고 있는 경우에는, 그 영향을 받기 쉬운 주파수의 진동만을 빼낸 형태로 트레이스 해 움직입니다. 음악에 대해서, 특정의 소리에 반응한 기타의 현이 울리는 것 같네요. 이미지로서는 다음 그림과 같이 될까요?
그러면 이런 현상이 일어나는, 민감하게 되는 주파수=고유 진동수에 대해서, 기계적인 것과 전기적인 것의 차이를 설명해 가고 싶습니다.
모든 것, 혹은 부위라고 하는 분 좋을지도 모릅니다만, 그것이 진동하기 쉬운 고유의 주파수를 가집니다. 대략적으로 말하면, 그 진동 구간의 질량과 강성에 의해 결정됩니다.
강성이 높은 쪽이, 주파수는 높아집니다. 핀과 붙인 현은 느슨하게 붙인 현보다 높은 소리가 되고, 단단한 것=유리쪽이 플라스틱보다 두드리면 청과 계속 높은 소리가 울리네요. 플라스틱끼리라도, 체감으로 단단한 것이 쪽이 높은 소리로 되는 이미지를 가지고 있는 사람은 많다고 생각합니다.
질량은 작은 것이 더 높은 주파수가 됩니다.
같은 재질로 질량, 즉 크기와 다른 경우, 작은 유리는 큰 유리보다 높은 소리가 있고, 실로폰과 철근의 플레이트 길이와 음정의 차이도 그렇습니다. 얇은 현은 두꺼운 현보다 높은 소리가 납니다.
(크기/형상이 같고 질량이 다른 예라고 하는 것은, 몸 주위에서는 질량이 높은 것이 쪽이 강성도 높은 것이 많기 때문에, 고유 진동수=소리의 높이도 트레이드 오프로 어렵습니다만・・・・.)
유리와 금속판을 두드렸을 때의 소리의 차이라고 하는 당의 이미지가 가까운 것입니까.
소리의 이야기가 많아진 곳에서, 자주(잘) 가성으로 유리, 예를 들면 와인 글라스를 쪼개는 묘사가 픽션의 세계에서는 볼 수 있습니다.
그것도 와인 글라스의 고유 진동수에 있던 소리를 부딪치고 있다는 것으로, 바로 공진 현상이군요. 실제로 인간의 목소리 수준에서 와인 글라스를 나누는 것은 꽤 어려운 것 같지만, 스피커에서 나온 소리로 와인 글라스를 깨는 같은 이과의 실험은 여러가지 되고 있는 것 같습니다.
WEB상에도 다양한 실험 결과 리포트나 동영상이 오르고 있으므로, 흥미가 있는 분은 검색을 해 보세요.
글래스를 매는 때와 테이블에 놓았을 때, 혹은 손에 들었을 때는 소리의 높이가 다르거나 하지 않습니까? 이것은 주변의 영향으로 진동 범위의 질량과 강성이 바뀌고 있기 때문입니다. 좀 더 간단한 사례에서는 기타의 현을 억제하면 음정이 바뀌어 높아진다. 고유 진동수의 결정에는 다양한 요인이 관련되어 있을 것 같습니다.
고등학교 물리학에서 배운 스프링, 진자 또는 악기의 현 등에서는 비교적 간단한 계산으로 고유 진동수가 요구됩니다. 특히 진자의 진동수는 「사에 질량이 없고, 무게에 크기가 없는(혹은 무게중심이 실의 선단이 되는) 이상적인 것이면, 질량이나 것의 강성에도 불구하고 지구의 중력=g 와 실의 길이만으로 진동하는 주파수가 정해져, 1/2π×√(g/l)가 됩니다.진자의 실의 길이가 길면 주파수는 낮고, 짧으면 높아집니다.
여기서 진자로부터 팍과 연상하는 것은 그네일까요? 하지만 그네에서는 이렇게 단순하지는 않습니다. 진자에 해당하는 실은 사슬이므로 질량은 무시할 수 없고, 키의 높이가 낮고 무게 중심이 바뀌거나, 손으로 사슬을 가지면 지점도 바뀌거나, 하물며 타고 있는 사람이 상하로 운동하는 것으로 꽤 복잡한 현상이 되어 버립니다. 이제 쉽게 계산식화할 수 없네요. 덧붙여서 다른 조건이 같고 키가 낮을 뿐이라면, 정성적으로는 키가 높은 쪽이 고유 주파수는 높고, 또 앉아 젓는 것보다 서 젓는 것이 역시 높아집니다. 진자의 공식과 비교해보십시오.
진자로부터 그네에서도 약간의 요소가 더해진 것으로 고유 진동수의 계산이 어려워졌습니다. 세상에 있는 것은 형상도 복잡하고, 진동의 지점이 되는 부분이 다수 있거나 여러가지 것이 조합되고 있거나, 진동 부위의 중심점도 마을 거리이기 때문에 꽤 복잡한 계산이 필요하게 됩니다. 예를 들면 부품이 실장된 기판에서는, 나사 고정되어 있는 부분이 진동의 지점이 되거나, 지점 사이에 실장된 부품 각각의 질량이 진동의 중심에 영향을 주거나 하기 때문에, 한줄기에서는 진동의 상태를 파악할 수 없습니다. 부위마다 복수의 고유 진동수가 존재하거나 하거나 위상도 다르기도 합니다.
한편, 「함께 흔드는, 함께 울리는 것은 어떤 상태인가?」에서 설명한 바와 같이 「원래는 작은 영향력이라도 그것이 계속되면, 자꾸자꾸 커져 버리는 현상」이 공진/공명이며, 그것은 고유 진동수로 일어납니다. 물건이 사용되는 환경에는 다양한 외부 요인이 있어, 정말로 그 환경하에서 안심·안전하게 사용할 수 있는지를 판단하려면, 고유 진동수나 사용 환경하에서 공진이 발생할 가능성 등을 파악해 두어야 합니다.
이러한 복잡한 진동의 현상을 해석하기 위해서 유한요소법 등을 이용한 CAE에 의해, 진동 해석을 실시해 실제의 것이 어떠한 때에 공진 현상을 일으켜, 그 공진에 견딜 수 있는지를 해석하는 일이 있습니다. 하나하나 손 계산으로 검증하는 것은 곤란해도, 예를 들면 부품이 실장된 기판을 구성하는 부재마다의 질량이나 강성 등을 바탕으로 그 제품을 해석하는 것으로, 다양한 문제를 사전에 예상할 수 있습니다. 커넥터 선정에서도 중요합니다.
일 IRISO 전자공업에서는 당사 제품의 사양을 검토하는 고객에게 진동 해석 서비스를 실시하고 있으며, 최적의 제품의 제안이나 해석 결과에 따라서는 기판 레이아웃의 변경까지 밟은 제안도 실시하고 있습니다. 링크처에서 그 쪽의 서비스의 소개도 하고 있습니다. 커넥터에 있어서 진동이 어떠한 문제를 가져오는지 등도 조금 설명하고 있으므로, 꼭 봐 주세요.
그럼 다음은 전기의 공진 현상에 이야기를 옮겨 보자고 생각합니다.
전기공학계가 아닌 쪽이 그렇게 말하고 있는 것을 듣습니다. 기계적인 공진의 베이스인 진동은 보고 알고, 듣고 음정에서 차이를 느껴지거나, 만지거나, 그 자리에 있어 느끼거나라고 아직 알기 쉽습니다만, 전기로 공진이라고 해도 이미지하기 어려울지도 모릅니다. 저는 학생 시절 전기 공학을 배우고 있었지만 여전히 가끔 길을 잃을 수 있습니다 (진지하게 배우지 못했기 때문일 가능성은 여기에서는 눈을 감습니다). 생산 현장의 관리 등에 유효한 수법으로서 「보이는 화」라고 하는 것이 있습니다. 예를 들면, 생산의 진척 상태나 불량의 발생 상황등, 한눈에 모르는 것을 모두의 눈에 보이는 형태로 해 공유하려고 하는 것입니다. 다른 전기에 얽힌 칼럼에서도 신경쓰고 있는 점입니다만, 가능한 한 보고 알 수 있는 궁리를 해 설명하고 싶습니다.
중학교의 이과에서 배울까 생각합니다만, 전기에는 직류와 교류라고 하는 것이 있습니다. (신호에 사용되는 전기는 직류 성분이나 교류 성분이라고 할 수 있도록 복합체이거나 합니다만, 일단 두어 둡니다)
교류의 메리트로서는 변압하기 쉽기 때문에 등(관련되는 유명한 곳에서는, 에디슨을 이긴 제자의 니콜라·테슬라씨라고 하는 사람이 있으므로 흥미가 있는 분은 조사해 주세요)입니다만, 앞으로의 이야기로 연결되어 가므로 신호 전송에도 교류적인 거동의 파악이 중요하다는 점만은 머리의 구석에 두고
그런데, 일본의 관동에서 사는 분들의 가정에 보내 오는 전기는 일반적으로 「교류・50Hz・100V전압」이 됩니다.
간사이는 60Hz입니다만, 깨끗이 좋기 때문에 설명하기 쉬운 50Hz의 쪽으로 진행시켜 주세요.
50Hz=1초간에 50주기라는 단위입니다만, 예로서 0.15초간에서의 50Hz의 전기의 움직임을 도시해 보았습니다.
0.15초 동안 이만큼 움직이면 눈에는 보이지 않지만 바로 불불과 진동하고 있는 상태입니다.
그리고 주파수가 다른 전기도 있습니다.
주파수가 100Hz=배가 되면, 더 바쁘게 불불떨어집니다. 소리로 말하면 높아진 느낌입니다. 덧붙여서 배이기 때문에 옥타브의 차이군요. 조금 이야기는 그것입니다만, 배인데 왜 옥타브=옥타=8인가라고 하면 드레미파솔라시드의 8개째가 1개째와 같은 드이기 때문입니다만, 원래 7음층이 된 이유는 기분 좋은 울림과 음계의 정합을 취하려고 하면 자연스럽게 그랬다고. 옥타브나 좋은 울림이라는 곳에 공진/공명을 시사하는 부분이 있네요.
그림에서는 2배에 그쳤습니다만 이 불블의 횟수는 물론 10배, 100배, 1000배····메가는 100만배, 기가는 10억배로, 끝없이 빠른 것이 있어, 고주파라고 불리는 영역이 되어 갑니다.
한편으로 위상이라는 생각이 있습니다.
같은 주기의 불블, 같은 주파수의 전기에서도, 시작과 끝의 타이밍은 다양하고, 비교했을 때의 차이를 위상의 어긋남이라고 합니다.
공진의 이야기로 이행할 때에 이 3개의 그림의 이미지가 중요하게 되므로, 어쨌든 이해를 해 주시면 기쁩니다.
우선 간섭이란 무엇입니까? 간섭이란, 「2개 이상의 동일종의 파동이 동일점에서 맞았을 때, 겹쳐서 서로 강해 혹은 약해지는 현상」입니다. 흔들리는 횟수를 주 "파"수라고 부르는 것처럼, 전항에서 설명한 것과 같은 교류의 전기도, 것을 흔들리는 진동도 파입니다. 그러므로 두 개 이상의 것이 겹치면 강하게 맞지 않거나 상쇄되고 있습니다.
튼튼한 스프링 위에 타고 크고 무거운 물건을 같은 힘을 가진 두 사람이 협력하여 상하로 흔들려고하는 곳을 상상하십시오.
두 사람의 숨이 딱 맞으면 힘이 합쳐져 크게 흔들릴 것입니다. 두 사람이 적당히 흔들리고 있으면, 우연히 숨이 있을 때만 크게 움직이고, 후에는 작게 밖에 움직이지 않거나 역방향의 힘끼리 상쇄되어 움직이지 않거나입니다. 두 사람이 전혀 반대의 움직임을 시키려고 하면, 완전히 상쇄되고 있어도 정말 말도 안 되는군요. 전기에서도 비슷한 일이 일어나는 것입니다. 여기까지가, 전제로서 억제해 주었으면 하는 이미지였습니다.
그러면 전기에서 공진이라는 두 가지 현상의 설명으로 이야기를 옮깁니다.
「임피던스란 무엇입니까?」라고 묻는다면 「전압÷전류입니다」라고 대답합니다. 당사에서 임피던스라고 하면 「(특성) 임피던스란 무엇입니까? 임피던스 매칭이나 임피던스 프로파일 등 오해를 초래하지 않는 국면에서는 특성/Characteristic이라는 단어가 생략되기 때문에, 업계에 따라서는 임피던스=특성 임피던스라고 파악해 버리는 사람도 많습니다만, 어디까지나 임피던스 중의 특정의 것입니다. 덧붙여 링크처의 용어집에도 기재하고 있습니다만 실제로 특성 임피던스도 「전압÷전류」입니다.
「어라? 「전압÷전류」는 옴의 법칙의 (전기) 저항이 아닌가?」라고 생각된 분, 대체로 정답입니다. 저항도 임피던스의 하나입니다. 직류에서도 교류에서도 전기 저항은 있습니다만, 전기에 움직임이 있는 교류가 되면 커패시턴스(정전 용량)와 인덕턴스라고 하는 요소/소자가 등장합니다(커패시턴스는 직류에서도 축전적으로 취급됩니다만). 여기에서 전압과 전류의 위상의 어긋남이라는 개념이 나옵니다. 임피던스가 크기뿐만 아니라 각도를 가지는 복소수가 된다···라고 하면 조금 까다롭습니다만, 단순한 덧셈으로 쌓을 수 없게 된다고 생각해 두어 주시면 여기에서는 충분할 것이라고 생각합니다. 우선 저항, 커패시턴스, 인덕턴스란 무엇인가를 간단히 살펴보겠습니다.
우선 옴의 법칙으로 친숙한 저항입니다.
전기 에너지가 열 대신에 손실됩니다. 전압과 전류의 위상은 동일하며 임피던스는 복소수적으로 말하면 실수입니다. 단위는 임피던스와 마찬가지로 Ω입니다. 커넥터나 전송선로에서의 저항에 관해서는 칼럼 내의 「「저항 손실」과 「유전 손실」신호가 열로 바뀌어 작아진다? '에서 좀 더 자세히 설명하고 있으므로, 관심있는 분은 그쪽도 참조하실 수 있으면 기쁩니다.
저항: R
・전기를 열로 바꾸어 소모(손실소자)
· 주파수에 의존하지 않음
(현실 세계에서는 표피 효과 등으로 상승)
· 소자 내의 전압과 전류의 위상은 동일
다음 커패시턴스입니다.
이른바 콘덴서라고 불리는 것은 이 커패시턴스 기능을 가진 부품이 됩니다. 전압에 따른 전기의 에너지를 축적하거나, 쌓인 전기의 양으로 전압이 정해지는 소자로, 그 성질에 의해 밸런스가 잡힌 후에는 직류의 전류는 통과하지 않고, 전압 변화의 급준한 주파수의 높은 전류 정도 통과하기 쉬운 특성을 가지기 때문에, 그쪽을 살린 사용 방법도 꽤 많습니다. 위상은 전류가 전압보다 π/2 진행합니다. 임피던스를 복소수적으로 말하면, 마이너스의 허수가 됩니다. 임피던스의 단위는 Ω입니다만, 그 전의 소자의 정수로서 F(파라드)라고 하는 단위를 가집니다.
커패시턴스: C
・전압에 비례한 전하를 축적(무손실 소자)
· 전압이 바뀌면 나머지 · 부족한 전하
전류로서 도입하거나 토출하는
· 전압 변화가 심한 고주파수만큼 전류가
흐르기 쉬운 = 임피던스 저하
・전압과 전류의 위상은 그림과 같이 어긋나
마지막으로 세 번째, 인덕턴스입니다.
인덕터라고 불리는 부품이나 코일이 이 기능을 갖춘 것이 됩니다. 전류의 변화를 싫어하기 때문에, 전압의 변화에 반대한 것 같은 거동을 갖기 때문에, 전압이 강제적으로 바뀌는 것 같은 고주파일수록 전류가 흐르기 어려워집니다. 위상은 전류가 전압보다 π/2 늦습니다. 임피던스를 복소수적으로 말하면 플러스의 허수가 됩니다. 임피던스의 단위는 Ω입니다만, 그 전의 소자의 정수로서 H (헨리)라고 하는 단위를 가집니다.
인덕턴스: L
・전류의 변화에 반대하는 전압(무손실 소자)
・전압처라면 움직임이 있을수록 전류를 억제할 수 있다
· 움직임이 심한 고주파수만큼 전류가
흐르기 어렵다 = 임피던스 증가
・전압과 전류의 위상은 그림과 같이 어긋나
여기서 주목하고 싶은 것은 C와 L의 전압의 전류의 위상의 관계가 정반대라는 것입니다.
우선은, 어쨌든 L과 C에서는 같은 전압이 걸려 있으면 「전류의 파」가 상쇄하고, 같은 전류가 흐르고 있으면 「전압의 파」가 상쇄하고 있다고 이미지 해 보세요. 원래 왜 전압과 전류의 위상이 다른지는, C에서는 쌓인 것을 토해내거나 부족한 분을 도입하거나, L은 변화를 억제하려고 하는 등의 원 쿠션 둔 대응이 어긋나 에 연결된다는 이미지라도 좋고, 좀 더 수학적으로 C라면 V=1/C×∫Idt(← 쌓인 전기가 전압에 비례한다는 식이군요)라든지, L이면 V==-L×dI/dt (←전류의 변화에 반대한 전압이 파생한다는 식이군요)와 같은 간단한 미분 적분의 끝에 설명도 할 수 있으니 흥미가 있는 분은 조사하거나 계산해 보거나 해주세요.
또, 서로 부와 양의 부호를 가지는 허수 임피던스이므로, 단순한 덧셈은 할 수 없다고 말했습니다만 L과 C만으로 저항이 없으면, 약간 복잡한 복소수 계산이 되지 않습니다(현실에는 모든 부품에 저항 성분이 있으므로, 그렇게 간단하게는 가지 않습니다만····).
한편 절대치로서는 C의 임피던스는 주파수의 상승에 수반해 작아져, L쪽의 그것은 커져 갑니다. 어쨌든 특정 주파수에서 완전한 상쇄가 발생할 것 같네요.
아래의 예에서는 C와 L의 임피던스의 교차점이 취해지는 곳 핀 포인트에서 서로가 발생하고 있는 전압의 파가 완전히 상쇄되고 있습니다.
전류가 흐르고 있는데 전압이 제로가 되기 때문에 임피던스는 0을 무엇으로 나누어도 0이 되네요. 요컨대는 특정 주파수에서 쇼트가 발생해 버리는 것과 같은 것으로, 약간의 것으로 가츨과 전류가 흐르는 회로가 됩니다.
이번 회로에서는, C와 L의 임피던스의 교차를 취할 수 있는 곳 핀 포인트로 서로 흐르고 있는 전류의 파가 완전하게 상쇄하고 있습니다. 소자부에는 전류가 흐르고 있습니다만, 자기 완결되어 있어 외부로부터는 전류가 들어오지 않는 상태입니다.
밖에서 본 임피던스는 전압이 걸리고 있는데, 전류가 흐르지 않기 때문에 최대=무한대가 됩니다.
두 경우 모두 최소 또는 최대는 주파수 f=1/(2π√(LC))(Hz)에서 발생합니다. 실제의 부품이나 회로에서는 다양한 장소에서 저항성분을 가지기 위해, 위에 열거한 사례보다 약간 마일드한 특성을 나타냅니다만, 그래도 핀 포인트로 임피던스가 극소화하거나 극대화하거나 합니다. 전류가 흐릿하게 흐르기 쉬워지거나 흐르기 어려워지는 것이 특정 주파수 핀 포인트에서 일어나는 이러한 현상을 전기의 공진이라고 부릅니다 (공진이라는 말로 표현되는 것이 갑자기 힘들게 떨어지지 않는 사람도 있을지도 모릅니다만, 실은 자신도 있습니다). 이러한 현상은 특정 신호만을 통과하거나 방해하는 회로에 필터로 응용됩니다.
음, 다소 어려운 일에 전기 공진이라는 현상은 또 다른 종류입니다. 개인적으로는 이쪽이 공진의 이름을 씌우기에 어울리는, 이미지하기 쉬운 현상이라고 생각하고 있습니다만, 그쪽으로 이야기를 옮겨 가고 있습니다.
칼럼내의「『플로팅』과 『고속 전송』은 상반되는 요구?』에서 특성 임피던스와 반사의 영향에 대해서 간단하게 접하고 있습니다. 아래의 그림은 그 칼럼내의 「왜 반사가 문제인가?」의 항에서 사용한 그림의 재게재가 됩니다.
이때는 시간 경과와 함께 반사되어 겹치는 신호를 「노이즈」로서 문제로 하고 있었습니다.
그렇다면 반복 신호가 그대로 타는 경우는 어떨까요?
아래는 간략한 것입니다만, 조금씩 작아져 가고 위상도 어긋나 가는 4개의 파형을 합한 것과 조금씩 작아져 갑니다만 위상은 「우연히」비싯으로 갖추었을 경우의 것을 비교 이미지로서 늘어놓아 보았습니다. 왼쪽에서는 최초의 파형과 어긋난 것이 작아져 합파가 되고 있습니다. 한편, 우측에서는 최초의 파형을 그대로 크게 한 것이 합파가 됩니다.
예를 들어 최초로 올린 「왜 반사가 문제인가?」로부터의 전용의 그림으로 말하면, 빙빙 돌아오는 시간과, 파도의 산과 산 사이의 시간이 갖추어져 있으면 서로 강하게 맞을 것 같습니다(실제로는 반사에는 반전하는 부의 반사라고 하는 것도 있습니다만, 양의 반사의 경우라고 생각해 주세요).
실제로 유한 길이의 신호선로에서 양단에서 정반사가 보내는 경우, 파의 주기와 신호가 끝에서 끝까지 왕복하는 데 걸리는 시간이 같으면 반복되는 반사에 의한 교류파(정현파)의 위상이 맞추어 중첩은 간섭하여 강해집니다. 선로의 길이=편도로 말하면 반주기분의 시간이 걸리는 길이가 되므로, 파의 길이의 절반=1/2 파장이라고도 말할 수 있습니다.
실제로 유한 길이의 신호선로에서 양단에서 정반사가 보내는 경우, 파의 주기와 신호가 끝에서 끝까지 왕복하는 데 걸리는 시간이 같으면 반복되는 반사에 의한 교류파(정현파)의 위상이 맞추어 중첩은 간섭하여 강해집니다. 선로의 길이=편도로 말하면 반주기분의 시간이 걸리는 길이가 되므로, 파의 길이의 절반=1/2 파장이라고도 말할 수 있습니다.
아래에 일단 파장의 계산식은 아래와 같습니다.
λ = (C/√ε) / f
λ = 파장 (m) C = 빛의 속도 = 3.08 × 108m /s εs = 선로 주변의 (등가) 비유전율 f = 주파수 (Hz)
공기중(엄밀하게는 진공중)이라면, 50Hz에서 약 6000Km, 1KHz에서 약 300Km, 100MHz에서 약 3m, 1GHz에서 드디어 약 30cm가 되어, 25GHz에서는 약 12mm가 됩니다. 1/2λ는 각각 그 절반이군요. 공기 이외의 물질로 주변이 채워지면 이것보다 짧아집니다. 플라스틱 계이면 물건에 따라 80% 정도~1/3 정도입니다.
그런데 반사가 "한쪽만"부의 경우는 파가 반전되어 버리기 때문에, 선로 길이가 1/4λ에 상당하는 주파수가 공진 주파수가 됩니다.
이것은 어느 쪽이라도, 한쪽만이라면 그렇게 됩니다. 양단 모두 음의 반사의 경우는 양단 모두 양의 반사의 경우와 마찬가지로 1/2λ 가 되는 주파수가 공진 주파수가 됩니다. 머리 체조로 생각해보십시오. 덧붙여서, 선로 밖의 특성 임피던스가 선로보다 낮은 경우에는 정반사(단락으로 전반사)하고, 높은 경우에는 부의 반사가 일어납니다(개방에서 전반사).
자, 이것이 두 번째 전기의 공진 = 반사에 의한 공진이지만,이 현상은 무엇을 가져올까요?
특정 주파수만 공진·증폭시킨다는 현상은 안테나나 필터 등에도 유효 활용할 수 있습니다만, 여기에서는 네거티브인 부분을 조금 생각해 봅니다. 특성 임피던스의 불연속점에 끼인 선로를 보자. 이 선로에서는 양단에서 반사가 일어나므로 특정 주파수에서 공진이 발생합니다.
신호가 흐르면 특정 주파수 성분만 공진이 일어나므로 방출하기 쉬워집니다. 또, 외래 노이즈도 특정 주파수의 것은 원이 작아도, 공진에 의해 무시할 수 없는 레벨이 됩니다. 그런데 임피던스의 불연속부에서 양의 반사가 일어나는지 음의 반사가 일어나는지는 의외로 사전에 파악하는 것은 어렵거나 합니다. 그러므로, 선재나 배선 길이 등을 설계할 때에는 특히 신경이 쓰이는 주파수대, 예를 들면 주위로 날아가고 있을 것 같은 무선 신호대나 선로를 흐르는 신호의 메인 파수등입니다만, 그 길이로서 1/2λ의 N배의 것과 그것+1/4λ의 것은 가능하면 피해 두는 것이 좋습니다.
이미 20년 이상 전의 이야기가 됩니다만, 이전의 일로 교제가 있던 엔지니어에게는, EMI계의 대책을 위해 여러가지 요소를 박으면 「공차 포함으로 공진이 일어나지 않는 케이블 길이 를 결정한다”계산용 엑셀 스프레드 시트를 자작해 활용하고 있는 쪽이 계셨습니다(그 엑셀을 “주세요!”라고 신청하면 “노하우이므로···”라고 거절되었습니다만). 또한, 어떤 기기의 접속용 케이블을 바꾸면 갑자기 EMI 시험에 빠져 실드 불량을 의심하고 있으면 실제로는 선재의 유전율의 차이로 정확하게 메인 주파수의 공진 길이가 되어 있는 것이 나중에 판명되었다는 사례도 벌어진 적이 있습니다. 이 두 가지 사례는 수 m, cm 단위로 발생한 문제였습니다.
한편으로, 칼럼내의「『플로팅』과 『고속 전송』은 상반되는 요구? 신호의 고속화가 진행된 현재로 “mm”단위까지 신경쓰고 있으면, 모든 것에 대해서 공진장을 피하고 있으면 아무것도 사용할 수 없게 되어 버립니다. 따라서, 선로간·부품간의 접속이나 부품 내부에서의 특성 임피던스의 정합을 취하는 것이 매우 중요하게 되어 있어, 덧붙여, 실드 대책이나 설치 처리 등도 중요해지고 있습니다. (그 근처는 사이트내「커넥터란」의 하부 항목 「커넥터의 신뢰성을 향상시키는 옵션」에서도 조금 접하고 있습니다).
이처럼 두 번째 전기의 공진 현상에 의해, 요즘 우리 커넥터 메이커가 임해야 할 과제도 점점 늘어나고 있습니다.
이번은 복수의 상황에서 사용되는 공진/공명의 말과 상황에 의한 혼란으로부터 시작되어, 기계적인 것과 전기적인 것은 2종류에 대해 설명했습니다.
우리 커넥터 메이커에게 있어서는 기계적인 것도 전기적인 것도, 대응·대책으로서 임해야 할 과제를 날마다 가져오는 것입니다. 단점뿐만 아니라, 유효한 활용도 생각할 수 있는 테마로 잘 알고 잘 생각해, 여러분의 도움이 되는 제품을 차례차례로 만들어 가면 좋다고, 날마다 연루를 거듭하고 있습니다!